摘要
【目的】利用多源信息融合构建音乐特征体系,解决音乐推荐冷启动问题,为用户提供个性化音乐推荐。【方法】采用基于多源信息融合的两段式推荐模型。通过神经网络融合多源信息,构建音乐特征体系,预测音乐的潜在因子向量,从而解决音乐冷启动问题,实现Top N推荐。【结果】在百万歌曲数据集上开展实验,所提出的方法与CNN模型相比,在F1值上的提升幅度达到9.13%,在RMSE、MAE上的降低幅度分别达到8.08%和3.91%。【局限】两段式推荐方法较端到端的训练有更大的局限性;此外,使用梅尔频谱训练占用内存资源较高。【结论】所提方法构建音乐特征体系,解决了音乐推荐冷启动问题,提高了音乐推荐性能。
-
单位北京科技大学; 经济管理学院