摘要
传统的核相关滤波器(KCF)目标跟踪算法利用目标的纹理特征进行相关运算定位,没有检测目标类别,因此在目标纹理被噪声干扰,例如目标运动模糊、快速抖动、目标遮挡等情况时的跟踪精度和成功率较低。针对这些问题,提出一种语义分割和多特征融合相结合的目标检测跟踪算法。该算法将目标跟踪分为检测和跟踪两个部分:在检测阶段使用全卷积网络(FCN)语义分割对场景进行语义分析,对场景中的目标进行分类;在定位阶段使用KCF算法进行跟踪定位,为了提高跟踪精度,将目标的方向梯度直方图(HOG)特征和颜色(CN)特征融合为新的特征。在标准数据集OTB-100视频序列上的实验结果表明,相较于KCF算法,所提算法的跟踪精度和成功率分别提高了14.3个百分点和13.2个百分点,有效提高了跟踪性能。
-
单位四川轻化工大学