摘要

目前,信息抽取研究主要面向肯定性信息,而自然语言文本中包含了大量否定性和不确定性信息,为了将此类信息与肯定性信息区分开,有必要针对否定性与不确定性信息抽取进行深入研究.针对这一任务,首次构建了一个16 841句的汉语语料资源,利用序列标注模型与卷积树核模型,系统地探索了各种序列化依存特征和结构化句法树特征的有效性,并提出了元决策树模型,对二者进行融合.实验结果显示,该方法在否定性和不确定性信息抽取任务上的精确率分别达到69.84%和58.57%,为相关研究打下了坚实的基础.

全文