摘要
在对高维少样本的遗传数据进行单核苷酸多态性(SNP)选择时,为能使所选SNP子集高度代表所有SNP信息,实现数据降维,在模糊C均值(FCM)算法的基础上提出一种改进方法GN-FCM。通过引入SNP权重因子量化SNP位点重要程度的差异性,同时将重点SNP邻域正则项引入模糊聚类的损失函数中,挖掘高度重要SNP与同邻域内其他SNP的关联性。实验结果表明,GN-FCM具有较好的收敛性,与DW-FCM算法相比,其构造的SNP子集在支持向量机、决策树和朴素贝叶斯分类中准确率分别提升5.73%、3.40%和3.79%,F1值分别提升4.01%、3.20%和2.22%。
-
单位无锡市精神卫生中心; 无锡市妇幼保健院; 枣庄市妇幼保健院; 江苏大学; 无锡市第五人民医院