摘要

本文提出一种空间波数混合域磁异常场三维数值模拟方法.该方法利用磁位三维空间域积分为卷积的特点,沿水平方向进行二维傅里叶变换,把空间域磁位满足的三维积分问题转化为不同波数之间相互独立的垂向一维积分问题.保留垂向为空间域,优势之一在于便于浅层单元剖分可适当加密,随着深度增加,单元剖分适当稀疏,可以准确模拟任意复杂地形和磁性体的磁异常,兼顾了计算精度与计算效率;优势之二在于一维积分垂向可离散为多个单元积分之和,每个单元采用二次形函数表征磁化强度,可得出单元积分的解析表达式,计算精度高、效率高.该方法充分利用一维形函数积分的高效和高精度、快速傅里叶变换的高效性及算法高度并行性,实现了磁异常场高效、高精度的数值模拟.设计棱柱体模型,将模型解析解与空间波数混合域法的数值解对比,结果表明该方法计算精度高、效率高.设计了组合棱柱体复杂模型,对比分析了标准FFT扩边法与Gauss-FFT法的计算精度与计算效率,总结了标准FFT的扩边系数选取策略.针对任意复杂地形条件下的磁异常模拟问题,本文提出一种适用于起伏地形条件下的磁异常场快速计算方法,并对其有效性进行了验证.