摘要
针对固定翼无人机作业过程中多工况的分类以及一般模式识别算法时效性低,准确率不高的问题,提出了"聚类分析-模式识别"相结合的多工况分析技术路线,将工况分析分为离线和在线2个阶段。离线阶段,提出子一种基于分组的密度聚类算法,采用分而治之的聚类思想对无人机历史飞行数据进行聚类分析,并将聚类所得各抽象数据簇视为工况。在线阶段,提出了一种基于多维度分解的快速模式识别算法,其调用离线聚类信息以在线识别测试数据工况。还搭建了数据采集与分析平台,利用实际飞行数据对算法进行了验证。结果表明本文提出的算法能有效提高工况识别效率和准确度。
-
单位自动化学院; 武汉大学; 中国人民解放军陆军工程大学