摘要
针对基于用户的协同过滤算法推荐结果过度集中在热门物品,导致多样性和新颖性较低、覆盖率较小的问题,文中提出基于加权三部图的协同过滤推荐算法.在分析数据稀疏和附加信息较少的基础上引入标签信息,可同时反映用户兴趣和物品属性,利用用户、物品和标签三元关系构建三部图.通过三部图网络映射到单模网络的方法获得用户偏好度,构建用户偏好度加权的三部图模型.根据热传导方法在加权三部图上进行资源重分配,挖掘更多的相似关系,利用协同过滤框架预测评分并进行推荐.在真实数据集上的实验表明,文中算法可较好地挖掘长尾物品,实现个性化推荐.
- 单位