基于特征选择与时间一致性稀疏外观模型的目标追踪算法

作者:张伟东; 赵建伟; 周正华; 曹飞龙
来源:模式识别与人工智能, 2018, 31(03): 245-255.
DOI:10.16451/j.cnki.issn1003-6059.201803006

摘要

为了更有效利用追踪目标的判别特征信息,提高目标追踪的精度和鲁棒性,在粒子滤波追踪框架下提出基于特征选择与时间一致性稀疏外观模型的目标追踪算法.首先,采集目标的正负模板和候选目标,根据特征选择模型对正负模板和候选目标进行特征选择,去除多余的干扰信息,得到关键的特征信息.然后,利用正负模板和候选目标的特征建立多任务稀疏表示模型,引入时间一致性正则项,促进更多的候选目标与先前帧的追踪结果具有稀疏表示的相似性.最后,求解多任务稀疏表示模型,得到判别稀疏相似图,获取每个候选目标的判别分,根据目标追踪结果更新正负模板.实验表明,即使在复杂的环境下,文中算法仍然比其它一些追踪算法具有更高的准确性.

全文