摘要

针对污水处理过程具有复杂非线性特性以及出水BOD难以精确测量的问题,文中提出一种基于变宽度的逆平方根和高斯函数线性组合的RBF神经网络软测量方法。神经网络的激活函数由逆平方根函数和高斯函数线性组合,弥补了单一激活函数在某些区间饱和的问题,提高了隐层激活函数的表达能力和自适应能力。由于激活函数的宽度对模型的泛化性能有较大的影响,因此引入基于核密度的变宽度策略可以有效提高网络泛化能力。文中采用改进LM算法实现了神经网络参数的在线学习。基于污水处理过程实际运行数据的仿真实验表明,所提方法对于出水BOD具有较高的预测精度和良好的自适应能力。

全文