摘要

为了提高跟踪算法在目标发生形变和被遮挡时的准确性,提出一种融合HOG (histogram of oriented gradient)特征和注意力模型的孪生目标跟踪算法.首先,采用对ResNet残差模型改进后的CIR (cropping inside residual)模型塑造孪生目标跟踪网络的骨干网络,充分利用不同层次的特征图,同时加深网络;其次,融入HOG特征,增强网络对图形几何变化的鲁棒性;再次,加入CBAM (convolutional block attention module)注意力模型,使网络能够在结合上下文信息的同时调节HOG特征在特征图中所占比例,增强特征图中的有效特征,弱化无效特征,使网络中各特征图发挥出最好的效果;最后,定义算法的损失函数.实验结果表明,所提算法在GOT-10 k数据集上进行训练后,能够在OTB100上获得较好的跟踪效果,在该数据集中精确率和成功率分别达到81.9%和60.6%.在目标物体发生形变和被遮挡的情况下,所提算法仍能取得较好的跟踪效果.