摘要

针对列车轮对振动信号易受轮轨噪声影响、故障特征提取困难等问题,提出一种基于优化变分模态分解(Variational mode decomposition,VMD)和多尺度样本熵-能量(Multiscale sample entropy-energy,MSEEN)指标的故障诊断方法。首先搭建考虑轮轨接触关系的轮对振动实验台,分别进行正常、车轮扁疤、车轴裂纹及扁疤-裂纹耦合故障状态下的轮对振动测试。其次,利用遗传算法,以样本熵、相关系数和均方误差为适应值搜索VMD的最佳分解个数及分解中心频率。然后基于优化VMD分解不同状态下的轮对振动信号并提取本征模态函数(Intrinsic mode function,IMF)分量的MSEEN指标。最后将指标与BP神经网络结合进行轮对故障诊断,总识别率达到94.44%。该方法可为实际运行工况中的列车轮对故障诊断提供借鉴。