摘要

传统的遗传算法在数据量不足的单机情况下可能存在早熟的现象,遗传算法对搜索范围的依赖性很强,大搜索范围的遗传算法往往有更好的表现。为解决以上问题,可把Spark海量存储和并行计算的能力运用到遗传算法的求解上,实现一种粗粒度的并行遗传算法。利用Spark并行执行遗传算法的选择、交叉和变异等操作,可以大大提高遗传算法的搜索范围和执行速度。实验将改进后的遗传算法应用到物流配送问题中,结果表明,与单机和传统的并行模型相比,基于Spark的遗传算法在运行时间上明显减少,同时早熟的现象也得到了缓解。