摘要

基于中国地区T213集合预报产品2 m温度预报数据,采用卡尔曼滤波类型的自适应递减平均法进行偏差订正处理,原方案在剧烈降温天气订正效果表现不理想。通过对递减平均参数w的重新构建得到改进的订正方案w(i,p)(i为站点信息,p为天气过程信息),在此基础上进一步优化对历史信息的有效提取,得到改进的方案w(i,p)相似法和w(i,p)统计法,并进行效果检验。结果表明:改进为包含空间和天气过程信息的函数w(i,p)后方案的订正效果得到不同程度的提高,其中24 h剧烈降温预报各成员预报均方根误差平均减小了0. 15℃;而进一步改进的w(i,p)统计法在当前几种剧烈降温预报中订正效果最优,其集合平均偏差与w(i,p)方案相比减小2. 54℃。

  • 单位
    河南省气象台