摘要

针对传统自编码网络在特征自动提取过程中仅以重构误差最小为目的而导致的分类信息模糊问题,提出了一种区分自编码网络,在自编码网络的隐层连接一个全连接层,加上Softmax分类器,将分类器的输出与标签信息的交叉熵添加到原始的损失函数中,以该复合损失函数最小为目标对网络进行训练。将上一层区分自编码网络的隐层作为下一层区分自编码网络的输入,依次堆叠形成堆叠区分自编码网络。运用改进前后的堆叠自编码网络进行滚动轴承故障特征自动提取,分别在实验室定转速和变转速多载荷数据集上进行了测试。定量计算改进前后网络提取特征的类内距和类间距,区分自编码网络最少都将类内距减少了8.26%,类间距增加23.02%。运用3种常...

  • 单位
    西安交通大学机械制造系统工程国家重点实验室