基于自适应k-means++算法的电力负荷特性分析

作者:李婧; 徐胜蓝; 万灿; 卢奕城; 王素英
来源:南方电网技术, 2019, 13(02): 13-19.
DOI:10.13648/j.cnki.issn1674-0629.2019.02.003

摘要

运用数据挖掘中的聚类算法对电力负荷曲线进行聚类分析,提炼电力负荷曲线之间的共性特征与差异特征,在负荷模型实用化方面有重要应用价值,可以帮助分析用户用电规律,指导电网规划及实时调度。本文提出了一种自适应k-means++负荷特性聚类算法,综合不同聚类数时的聚类结果验证了数据集里各样本的相似性,通过迭代图切分的方法确定了最佳聚类数,避免了人为设定电力用户日负荷曲线聚类数不恰当导致的单一聚类结果的过大偏差,提高了负荷分类的精确性。算例结果验证了该算法的可行性和有效性,表明该算法求最佳聚类数的准确性高、鲁棒性好。

全文