为了解决机器学习在样本量较少的情况下所面临的巨大挑战,研究人员提出了小样本学习的概念。在现有的小样本学习研究工作中,嵌入学习方法取得了不错的效果,引发了大量关注。根据训练特征嵌入函数时结合任务特征信息的方式,将嵌入学习方法划分为单一嵌入模型和混合嵌入模型两大类。依据划分的类别,对现有的嵌入学习方法的研究工作展开进行研究。汇总了现有的小样本标准数据集,阐述了每一类嵌入学习方法的表现,分析了影响小样本学习性能的因素。讨论嵌入学习方法目前面临的挑战,并展望未来的研究方向。