摘要

针对目前地面驱动螺杆泵故障诊断存在效率不高、精度不足、损耗资源的问题,提出通过引入功率谱细化的思想改进小波包变换,再结合布谷鸟搜索(cuckoo search, CS)优化反向传播(back propagation, BP)神经网络的诊断方法。首先,通过改进的小波变换对螺杆泵有功功率分解重构得到特征向量;其次,与瞬时流量、进口回压等参数进行归一化处理,作为BP神经网络的输出层信息;再次,使用布谷鸟搜索寻优得到BP神经网络的权值和阈值,建立CS-BP故障诊断模型;最后,应用于螺杆泵不同故障类型的诊断,并通过与目前的主流诊断方法进行诊断效果的分析比较。结果表明,对于螺杆泵不同类型故障诊断的平均精度达到95.6%,对比分析证明了所提方法的可行性与优越性。

  • 单位
    长江大学; 中国石油天然气股份有限公司