摘要

针对低照度图像质量较差、噪声多、纹理模糊等问题,提出一种基于双频域特征聚合的低照度增强网络(dual frequency-domain feature aggregation network, DF-DFANet)。首先,构建频谱光照估计模块(frequency domain illumination estimation module, FDIEM)实现跨域特征提取,通过共轭对称约束调整频域特征图抑制噪声信号,并采用逐层融合方式提高多尺度融合效率以扩大特征图感受野范围。其次,设计多谱双注意力模块(multiple spectral attention module, MSAM)聚焦图像局部频率特征,通过小波域空间、通道注意力机制关注图像细节信息。最后,提出双域特征聚合模块(dual domain feature aggregation module, DDFAM)融合傅里叶域和小波域特征信息,利用激活函数计算自适应调整权重实现像素级图像增强,并结合傅里叶域全局信息提高融合效果。实验结果表明,在LOL数据集上所提网络的PSNR达到24.3714,SSIM达到0.8937。与对比网络相比,所提网络增强效果更具自然性。