针对网络自身存在的网络特征提取不充分情况,将Faster R-CNN的共享卷积层进行前层特征融合,使得前层有用却不明显的特征可以在后层中被重新利用,达到增强网络细微特征提取的效果,并采用优化非极大值抑制(NMS)方法筛选候选框。实验结果表明,基于Faster R-CNN多特征融合的人类活动检测网络不仅可更完整地检测出人所在的位置,而且对目标漏检情况也有所改善,对活动中人的检测精度比Faster R-CNN网络提高了4.5%。