摘要

机器学习在入侵检测中发挥着至关重要的作用,特征选择作为机器学习的关键预处理步骤,受到广大研究者的关注。针对麻雀搜索算法寻优能力强但易陷入局部最优的问题,本文对特征编码、位置更新等策略进行改进,提出一种多策略融合的二进制麻雀搜索算法,结合决策树分类器构造封装式特征选择算法,从高维特征空间中选择具有代表性的特征,以提高模型的预测能力并降低时间成本。基于NSL-KDD和UNSW-NB15数据集进行了性能评估,实验结果表明:与多种特征选择算法相比,利用该算法进行特征选择后的数据具有最佳二分类效果。

全文