摘要

人体姿态估计是计算机视觉中的基础任务,其可应用于动作识别、游戏、动画制作等。受非局部均值方法的启发,设计了非局部高分辨率网络(non-local high-resolution,NLHR),在原始图像1/32分辨率的网络阶段融合非局部网络模块的,使网络有了获取全局特征的能力,从而提高人体姿态估计的准确率。NLHR网络在MPII数据集上训练,在MPII验证集上测试,PCKh@0.5评价标准下的平均准确率为90.5%,超过HRNet基线0.2个百分点;在COCO人体关键点检测数据集上训练,在COCO验证集上测试,平均准确率为76.7%,超过HRNet基线2.3个百分点。通过3组消融实验,验证NLHR网络针对人体姿态估计在精度上能够超过现有的人体姿态估计网络。