摘要
NSGA-Ⅱ算法在处理高维多目标问题时解集的区分度变得很差,对此,有学者提出了基于扩张角的广义Pareto支配优化算法(GPO-NSGA-Ⅱ),即通过改变扩张角来调整解的支配区域,从而调整解集的区分度,进化过程中扩张角保持恒定。本文在GPO-NSGA-Ⅱ算法的基础上提出了随着种群进化扩张角动态改变的广义Pareto支配优化算法(DGPO-NSGA-Ⅱ),通过动态调整种群进化过程中的扩张角来影响种群进化的选择压。扩张角的动态调整采用线性减小方式,即随着种群的进化将扩张角从初始扩张角线性减小为0。为保证获得一个较好的初始扩张角区间,对种群进化的不同扩张角进行了大量对比实验。将该算法与GPO-NSGA-Ⅱ、NSGA-Ⅱ在测试函数上进行对比实验,结果表明该算法能以更高的精度更快地收敛到理论前沿,个体分布也更均匀。
- 单位