摘要

与传统点目标跟踪不同,扩展目标跟踪既要估计目标的运动状态,还需估计目标的扩展状态,包括目标的形状、大小、方向等信息。针对扩展目标跟踪中存在的扩展状态估计不准确和非线性问题,提出一种基于随机超曲面模型(random hypersurface model,RHM)的扩展目标伯努利滤波算法。该算法首先采用RHM对目标量测源建模;然后,在扩展目标伯努利滤波框架下,实现对单扩展目标运动状态和扩展状态的实时估计;最后,引入Gamma分布以提高量测率估计的准确性。此外,为了降低计算复杂度,在量测更新中采用距离划分来减少所有可能的划分总数。实验结果表明,所提滤波算法在估计目标运动状态、扩展状态和量测率等方面优于现有的滤波算法,并且可用于实际视频跟踪场景。