摘要

U-K理论为获得约束多体系统的解析动力学方程提供了新的理念,但由于数值近似和截断误差等因素的影响,动力学方程在位置和速度层面上存在约束违约。Baumgarte约束违约稳定法(BSM)通过约束修正得到稳定的动力学方程。然而,Baumgarte参数的选择通常涉及一个试错过程,可能会出现失效的仿真结果。为此,利用经典的四阶Runge-Kutta法研究了Baumgarte参数选取问题,创建了基于BSM修正后的U-K理论的机器人系统解析动力学方程。以下肢康复机器人为研究对象仿真分析,结果表明:利用所提方法可以有效抑制约束违约,关节角度误差控制在-5×10-3(°)~5×10-3(°)范围内;关节角速度误差控制在-2×10-4~2×10-4 rad/s范围内;机器人末端执行器运行轨迹能够很好地贴近系统预定的目标。

全文