摘要
为及时获取大田作物根区土壤含水率(Soil moisture content, SMC),实现精准灌溉,运用高光谱技术,通过连续2年(2019—2020年)田间试验采集了冬小麦拔节期不同土层深度SMC及高光谱数据,构建了3类植被指数(蓝、黄和红边面积等三边光谱参数,与冬小麦根区SMC相关性最高的任意两波段植被指数和前人研究与作物参数相关性较好的经验植被指数)并筛选与各土层深度SMC相关系数最高的植被指数,随后将筛选后的植被指数作为模型输入,分别采用随机森林(Random forest, RF)、反向神经网络(Back propagation neural network, BPNN)和极限学习机(Extreme learning machine, ELM)构建冬小麦拔节期不同土层深度SMC估算模型。结果表明,绝大部分三边参数、任意两波段植被指数和经验植被指数在深度0~20 cm土层的SMC相关系数较20~40 cm和40~60 cm更高,在深度0~20 cm土层两波段组合构建的光谱指数与SMC的相关系数最高,均超过0.8,其中RI与SMC的相关系数最高,为0.851,其波长组合为675 nm和695 nm。RF模型是SMC的最佳建模方法,其中深度0~20 cm土层的模型精度最高,估算模型验证集的决定系数R2达0.909,均方根误差(RMSE)为0.008,平均相对误差(MRE)为3.949%。本研究结果可为高光谱监测冬小麦根区SMC提供依据,为快速评估水分胁迫下的作物生长提供应用参考。
- 单位