摘要

针对环境干扰、传感器噪声和跟随时变车速稳定性较差等问题,提出一种基于KF(kalman filtering)的改进MPC(model predictive control)算法。搭建CACC(cooperative adaptive cruise control)车辆间纵向运动学模型,并建立离散状态空间方程;利用KF对状态变量降噪,同时对预测模型进行鲁棒性设计;对不同工况下CACC控制目标进行分析,分别建立目标优化函数。通过搭建Simulink与CarSim联合仿真模型进行验证,结果表明,改进MPC算法能够提高城市与市郊工况下车辆的燃油经济性与驾乘舒适性,实现公路工况下对时变车速的稳定跟随。