摘要
采用基于机器学习的多层感知机算法,利用GOCI(Geostationary Ocean Color Imager)传感器获取的瑞利校正反射率数据,对东中国海大型漂浮藻进行遥感自动识别,采用线性混合像元分解来计算大型漂浮藻的覆盖面积,并利用膨胀和侵蚀法进行大型漂浮藻的分布面积计算。利用L8/OLI(Landsat 8/Operational Land Imager)高空间分辨率资料进行验证,结果表明,基于机器学习遥感算法针对GOCI提取的大型漂浮藻覆盖面积,与L8/OLI结果十分接近,R2达到0. 959,平均绝对误差和平均相对误差分别为39. 32 km2和18. 15%。
-
单位南京信息工程大学; 江苏省环境监测中心