摘要

为提高大样本集情况下BP神经网络的训练效率,提出了一种基于局部收敛权阵进化的BP神经网络MapReduce训练方法,以各Map任务基于其输入数据分片训练产生的局部收敛权阵作为初始种群,在Reduce任务中通过种群进化,选取适应度最高的权阵作为Map任务下一轮训练的初始权阵,直至该权阵对所有输入数据分片收敛。实验结果表明,与现有方法相比,该方法可有效避免MapReduce训练BP神经网络时容易陷入局部收敛的问题,并大大减少训练时间。