摘要

T波形态分类有助于诊断心肌缺血、急性心包炎和心脏猝死等疾病,是心电图远程监控中一个重要的研究课题.传统的T波分类算法依赖于T波检测,在准确定位T波的关键点之后再提取T波特征,完成分类.但是由于T波位置可能发生一定程度偏移,T波的形态多变且受到多种噪声的干扰,T波检测是一个难题.为了解决上述问题,本文提出基于卷积神经网络的T波分类算法:首先根据QRS波群位置及医学统计规律确定一个T波候选段,然后采用卷积神经网络直接完成T波分类.由于卷积神经网络有稀疏连接、权值共享的特性,能够通过训练自动获取T波特征,并且其特征对微小平移具备不变性且对噪声不敏感,从而能够有效解决T波形态分类问题.最后在MIT-BIH QT心电数据库上对本文方法进行测试,实验结果表明,本文方法可以在T波起始点未确定的情况下,能够识别单峰直立、单峰倒置、低平、负正双向、正负双向五类T波形态,正确率达到了99.1%.