摘要
煤炭价格的准确预测对化解能源价格风险有着重要意义,针对煤炭价格预测的问题,开展了基于集成模型的煤炭价格多步预测研究。本研究分析了影响煤炭价格的主控因素,并建立了数据集;将粒子群优化算法(Particle swarm optimization, PSO)和长短期记忆模型(Long Short-Term Memory, LSTM)有效集成,建立了一种基于PSO-LSTM的多参量多步预测模型。利用多参量多步预测模型调用数据集进行了曹妃甸港煤炭价格预测,结果表明:基于PSO-LSTM的多参量多步预测模型预测效果优于基于BP、LSTM的预测模型;其预测价格与实际价格的MAPE、R2值分别为0.025、0.908,能够为煤炭市场的科学管控提供帮助。