摘要
以16种合金元素含量为输入层节点参数,以充放电循环性能为输出层节点参数,构建了16×48×1三层神经网络预测模型,并对预测能力进行了试验验证,同时对模型选出的合金进行了化学成分、显微组织、物相组成和充放电循环性能的测试与分析。结果表明,该神经网络模型的预测精度较高,V3TiNi0.56-0.1Sc合金具有最佳的充放电循环性能;该合金由V基固溶体相、TiNi相和Ti2Ni相组成,经过15次充放电循环后放电容量保持率高达82%,较V3TiNi0.56合金提高了80%。
- 单位
以16种合金元素含量为输入层节点参数,以充放电循环性能为输出层节点参数,构建了16×48×1三层神经网络预测模型,并对预测能力进行了试验验证,同时对模型选出的合金进行了化学成分、显微组织、物相组成和充放电循环性能的测试与分析。结果表明,该神经网络模型的预测精度较高,V3TiNi0.56-0.1Sc合金具有最佳的充放电循环性能;该合金由V基固溶体相、TiNi相和Ti2Ni相组成,经过15次充放电循环后放电容量保持率高达82%,较V3TiNi0.56合金提高了80%。