摘要
针对局部保持投影算法的无监督性质和参数选择复杂性问题,结合线性鉴别分析算法,提出一种改进的有监督无参数局部保持投影算法(Linear Discriminant Supervised Parameter-free Locality Preserving Projection algorithm,LD-SPLPP). LD-SPLPP算法采用监督模式并使用广义Dice系数的方法构建近邻矩阵,有效避免LPP(Locality Preserving Projection)算法参数选择调整的问题.新算法在UCI的八个低维度数据集和两个高维度人脸数据库上进行了实验,通过对数据的特征提取,采用最近邻分类法统计识别率,并分析了实验分类后的数据值与算法性能的关系.上述实验过程中,将新算法与PCA,LDA,ULDA,OLDA,LPP,SPLPP,PSKLPP,PSLMM和EP-SLPP算法进行了对比,实验结果证明了LD-SPLPP在数据降维和特征提取方面的有效性.
-
单位建筑工程学院; 江苏工程职业技术学院; 南京林业大学