摘要
人体姿态估计是计算机视觉中的一项重要任务。传统的姿态估计方法存在难以实现复杂场景下分离目标和背景、易受人为设定先验信息影响、效率过低等问题。随着人工智能技术的发展,深度学习技术日趋成熟,基于深度学习的人体姿态估计方法的精确率和速度等性能均优于传统的人体姿态估计方法。近年来,作为三维人体姿态估计的基础,二维人体姿态估计模型在解决拥挤和遮挡方面取得了长足进步,但大多数网络模型采用的是层数过多的卷积神经网络(convolutional neural network,CNN)模型,对网络速度产生了很大影响。基于部署在边缘侧的实际应用需求,二维人体姿态估计网络的轻量化成为研究热点,且具有潜在的创新应用价值。根据基于深度学习的二维人体姿态估计模型的发展历程和优化趋势,可将其分为单人姿态估计、多人姿态估计以及轻量级人体姿态估计3类。本文对各类人体姿态估计采用的不同卷积神经网络模型进行总结,对各类神经网络模型的特点进行分析,对各类估计方法的性能进行比较。虽然深度卷积神经网络(deep convolutional neural network, DCNN)模型的结构设计越来越多元化,但是各类深度学习网络模型在处理人体姿态估计任务时,仍具有一定的局限性。本文对二维人体姿态估计模型采用的技术方法及其存在的问题进行深入讨论,并给出了未来可能的研究方向。
- 单位