摘要
以往的文本情感分析模型存在忽略文本边缘信息、池化层破坏文本序列特征的问题,并且特征提取能力与识别关键信息的能力也存在不足。为了进一步提升情感分析的效果,提出了一种基于注意力机制的动态卷积神经网络(Dynamic Convolutional Neural Network, DCNN)与双向门控循环单元(Bi-directional Gated Recurrent Unit, BiGRU)的文本情感分析模型DCNN-BiGRU-Att。首先,利用宽卷积核提取文本边缘特征,采用动态k-max池化保留了文本的相对位置序列特征。其次,构建了DCNN与BiGRU的并行混合结构,避免了部分特征损失问题,并同时保留局部特征与全局上下文信息两种特征,提高了模型的特征提取能力。最后,在特征融合之后引入注意力机制,将注意力机制的作用全局化,提高了模型识别关键信息的能力。将该模型在MR与SST-2两个公开数据集上与多个深度学习模型进行对比,其准确率分别提高了1.27%和1.07%,充分证明了该模型的合理有效性。
- 单位