Res2Net融合注意力机制的YOLOv4目标检测算法

作者:张翔; 刘振凯; 叶娜; 赵妍祯
来源:计算机测量与控制, 2022, 30(09): 213-227.
DOI:10.16526/j.cnki.11-4762/tp.2022.09.032

摘要

针对传统目标检测算法容易出现漏检、误检或者有遮挡物时检测困难等问题,提出一种Res2Net融合注意力机制的YOLOv4(Res2Net fusion with attention learning YOLOv4, RFAL YOLOv4)目标检测模型;首先为了获取更多特征图语义信息,通过在一个残差块内构造层次化的类残差连接,引入Res2Net替换原YOLOv4主干网络中的ResNet残差网络结构,可以获取到更细小的特征,同时也增加了模型感受野;其次将Res2Net与注意力机制相融合,获取关键特征信息,减轻因优化主干网络带来计算量增加的负担;最后通过改进CIOU损失,降低预测框与真实框之间的误差值,有效的解决因目标过小或者有遮挡时模型出现漏检误检等问题;在公开的PASCAL VOC数据集上进行验证,结果表明:RFAL YOLOv4模型的mAP达到了79.5%,比原模型提升了5.5%,改进后的模型具有较高的鲁棒性。

全文