摘要
针对传统图像拼接算法速度较慢,难以满足获取大分辨率全景图像的实时性要求,本文提出一种基于CUDA的快速鲁棒特征(speeded-up-robust features, SURF)图像配准算法,从GPU线程执行模型、编程模型和内存模型等方面,对传统SURF算法特征点的检测和描述进行CUDA并行优化;基于FLANN和RANSAC算法,采用双向匹配策略进行特征匹配,提高配准精度.结果表明,相对串行算法,本文并行算法对不同分辨率的图像均可实现10倍以上的加速比,而且配准精度较传统配准算法提高17%,精度最优可高达96%.基于CUDA加速的SURF算法可广泛应用于安防监控领域,实现全景图像的实时配准.