摘要
在对抗攻击研究领域,黑盒攻击相比白盒攻击更具挑战性和现实意义。目前实现黑盒攻击的主流方法是利用对抗样本的迁移性,然而现有大多数方法所得的对抗样本在黑盒攻击时效果不佳。本文提出了一种基于高斯噪声和翻转组合策略方法来增强对抗样本的迁移性,进而提升其黑盒攻击性能。同时,该方法可与现有基于梯度的攻击方法相结合形成更强的对抗攻击。本文在一个与ImageNet相容的数据集上做了大量实验,实验结果表明本文方法所得的对抗样本在黑盒攻击性能上有显著提升。并且,本文最佳攻击组合能以86.2%的平均成功率欺骗6种先进防御模型,相比目前最强攻击方法提升约8.0%。
-
单位中国人民解放军军事交通学院; 中国人民解放军陆军工程大学