一个好的神经网络结构可以大大提高它的处理能力和收敛速度,所以神经网络的构造方法一直是人们研究的热点问题。本文利用粗集理论的数据分析能力和决策树对数值属性的分割能力,提出一种基于粗集与决策树的新型神经网络构造方法RCBNN。经试验表明,使用该方法构造的神经网络,具有易于构造、可理解性好、收敛速度快且构造的网络规模较小的特点。