摘要

用卷积网络进行人体行为识别是毫米波雷达的一个热门研究方向。由于卷积网络结构的缺陷性,而且目前用于人体行为识别公开的雷达领域数据样本量过少,传统深度学习算法对雷达微多普勒图像的识别率不高,且在训练过程中容易出现过拟合的现象。针对上述问题,本文提出一种融合快照集成与迁移学习的雷达人体行为识别算法。首先,针对深度卷积网络无法提取图像全局特征的问题,该算法通过搭建Vision Transformer(VIT)模型引入注意力机制。其次,通过VIT模型在公开自然数据集上进行任务迁移和特征空间的迁移,解决微多普勒图像的识别过拟合的问题。最后,利用基于快照集成的投票机制算法,提升模型对复杂雷达微多普勒图像的识别能力。试验结果表明,在目标任务数据集样本量少、背景复杂的情况下,该算法能在不增加训练成本的前提下提升微多普勒图像的识别准确率,在VIT模型下该算法识别准确率达到了89.25%,优于经典卷积神经网络。

全文