摘要

事件抽取旨在从非结构化的文本中抽取出人们感兴趣的事件信息并对其进行结构化表示。事件抽取具有广泛的应用,包括自动问答、机器翻译、推荐系统、信息检索、知识图谱构建等。现有的事件抽取研究综述,主要围绕句子级的事件抽取任务和实现方法展开。但事件的描述、事件元素和元素角色通常分布在整篇文档的多个句子中,更完整的事件抽取应从文档层面进行,即进行文档级事件抽取。近年来,随着深度学习技术的发展和多个文档级事件抽取数据集的公开发布,使文档级事件抽取受到了广泛的关注。该文对文档级事件抽取的相关研究进行了全面的综述:首先介绍了文档级事件抽取任务的定义和常用数据集,然后对典型方法进行了梳理和分析,最后对未来的研究方向进行了展望。