摘要
近年来各类人体行为识别算法利用大量标记数据进行训练,取得了良好的识别精度。但在实际应用中,数据的获取以及标注过程都是非常耗时耗力的,这限制了算法的实际落地。针对弱监督及少样本场景下的视频行为识别深度学习方法进行综述。首先,在弱监督情况下,分类总结了半监督行为识别方法和无监督领域自适应下的视频行为识别方法;然后,对少样本场景下的视频行为识别算法进行详细综述;接着,总结了当前相关的人体行为识别数据集,并在该数据集上对各相关视频行为识别算法性能进行分析比较;最后,进行概括总结,并展望人体行为识别的未来发展方向。
- 单位