为建立一种塑料吸管物证的高效、准确分类方法,利用红外光谱法对来自全国的4个品牌共42个塑料吸管样本进行了检验。经过前期光谱预处理后,利用主成分分析法提取出了25个主成分,累积方差贡献率为99. 689%,并将其作为判别变量进行判别分析。判别结果区分效果良好但交叉验证正确率仅为73. 8%,有待进一步提高。因此将判别得分作为特征变量导入K值为1的K近邻算法中,构建起了分类正确率为100%的K近邻算法模型,实现了对塑料吸管物证的准确分类。