摘要

在基于无线传感器网络多目标跟踪数据融合系统研究的基础上,提出了改进的模糊聚类平均算法,并给出了相应的集中式数据融合整体方案.算法将每一批观测数据按照航迹估计位置的关联门限进行划分,然后分别对航迹和关联门限内的采集信息进行模糊关联,再把获得的最大关联度数据分配给各条航迹作为目标的实际位置.数据融合的思路是,删除所有关联门限内的数据,将剩余数据再进行航迹起始模块处理.模拟实验表明,所提算法可解决多目标跟踪的误跟、漏跟和振荡问题,数据融合方案既能保存有用信息,又能去除冗余数据,进而有效避免了漏跟和重复跟踪的问题.