摘要
为提升极化合成孔径雷达(SAR)地物分类精度,提出一种基于AdaBoost改进型随机森林和支持向量机(SVM)结合的二级分类结构。首先将AdaBoost改进型随机森林作为初级分类器,该分类器能根据决策树的分类能力赋予权重,分类能力越强则权重越高,从而提升初级分类精度。初级分类器还能评估输入特征的重要性,获得重要性排名。根据重要性排名进行特征筛选,用筛选后的特征训练SVM分类器,获取二级分类结果。最后利用邻域投票法将两级分类结果融合。AIRSAR极化数据对比实验表明,该分类结构可有效提升极化SAR地物分类精度。
- 单位