摘要

汽油属性的在线预测多采用无偏估计方法建立的近红外定量分析模型实现,累积预测误差的正负偏差范围难以控制,这会严重影响汽油调合优化控制的投运效果.针对这一问题,本文提出了一种采用有偏估计实现油品属性在线预测的方法.首先从最小最大概率学习机出发,提出了有偏最小最大概率回归模型.然后利用即时学习方法设计了有偏回归模型的局部建模与更新策略,用以提高回归模型的自适应能力.最后在国内某炼厂汽油调合过程中采集的工业数据上进行实验,结果表明该方法与传统方法相比具有明显优势,有利于大幅度提高调合优化控制的投运率.