摘要
为提升核电厂旋转机械部件的故障诊断准确率,以及增强诊断模型泛化能力,本文提出了一种基于卷积神经网络和支持向量机的滚动轴承故障诊断方法。对轴承原始振动信号进行连续小波变换,得到其时频图;然后,使用预训练好的卷积基对小波时频图进行特征提取,获取深层特征,并将这些深层特征正则化处理后,使用主成分分析法对其进行降维;将得到的特征数据输入到基于粒子群优化的支持向量机中,从而实现滚动轴承的故障诊断。实验结果表明:该方法对不同负载工况下的多类滚动轴承故障具有良好的诊断效果,并且在噪声干扰下也能保持较好的效果,与其他方法相比,其抗噪稳定性更好,泛化能力更强。
-
单位哈尔滨工程大学; 工业和信息化部