摘要

为有效提取径流序列的局部特征信息、提高神经网络径流预测模型的非线性拟合能力和预测性能,引入变分模态分解(VMD)、去趋势波动分析(DFA)方法,提出了一种基于长短时记忆(LSTM)神经网络的组合日径流预测模型(DFAVMDLSTM),并采用均方误差(RRMSE)、平均绝对误差(MMAE)、平均绝对百分误差(MMAPE)以及确定性系数(DDC)统计指标对模型进行评价。在三峡水库的径流预测研究中,经过与其他三种典型数据驱动模型的预测结果对比发现,DFAVMDLSTM组合日径流预测模型在不同评价指标上均有显著提升,说明该模型可充分挖掘径流序列组成特性,学习历史长程依赖,能有效提高径流预报精度。