在长短期记忆(LSTM)循环神经网络(RNN)的基础上,通过减少控制门的数量,引入门控循环单元(GRU) RNN。利用质子交换膜燃料电池(PEMFC)在动态循环工况下的耐久性测试数据,训练、验证RNN模型,并对PEMFC的剩余使用寿命进行预测。基于GRU所得的预测结果,能准确跟随实际电压值的变化,在计算速度和准确度方面优于LSTM。在电流密度为0.71 A/cm2时,预测结果的均方误差可达0.003 5。