摘要

为快速、准确识别马铃薯芽眼,提高种薯发芽率,提出一种基于卷积神经网络的马铃薯芽眼识别方法。针对多视角和不同程度重叠的马铃薯芽眼图像,通过数据增广及图像预处理建立数据库。在此基础上,利用YOLOv3网络的高性能特征提取特性,实现马铃薯芽眼的快速准确识别。结果表明:YOLOv3网络对含有单个无遮挡芽眼的样本、含有多个有遮挡芽眼的样本及含有机械损伤、虫眼及杂质的样本均能够实现良好稳定的识别,最终检测精确度P为97.97%,召回率R为96.61%,调和平均值F1为97%,识别平均精度mAP为98.44%,单张检测时间为0.018 s。对比分析YOLOv4-tiny及SSD等网络后可知,YOLOv3模型可同时满足马铃薯芽眼识别的精度与速度要求。因此,YOLOv3网络对马铃薯芽眼识别具有良好的鲁棒性,为马铃薯切种机实现自动化切种奠定基础。

全文