摘要

针对蚁群算法存在的搜索精度不足以及收敛速度缓慢等问题,本文提出了一种加入角度参数的双向蚁群算法用于解决机器人路径搜索问题。与传统蚁群算法不同,该算法首先对蚁群的起始位置进行改进,使其根据蚂蚁编号从地图中的一系列起点集合中选择适当节点出发,增加解的多样性同时并获得全局最优解。同时改进了信息素更新规则,对当前迭代次数寻找到的最优路径进行信息素奖励,使其对下次迭代蚂蚁的寻路过程起到引导作用。最后,为提高算法的收敛速度,提出了角度参数并将其加入到蚂蚁的转移概率中,使得蚂蚁在根据转移概率选择下一行走节点时能够优先选择与目标节点角度差较小的节点,从而提高获取最优解的概率,并在算法后期加快收敛速度。大量仿真实验结果表明本文所提出算法的路径搜索能力和迭代收敛效果显著提高。